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Abstract
In this study, in order to control a partially ob-

servable linear dynamical system, we propose a novel
framework, called continuous state controller (CSC).
The CSC incorporates an auxiliary “continuous” state
variable, called on internal state, whose stochastic pro-
cess is Markov. The parameters of the transition prob-
ability of the internal-state are adjusted properly by a
policy gradient-based reinforcement learning, and then
the dynamics of the linear dynamical system can be
extracted. Computer simulations show that the good
control of the partially observable linear dynamical
system is achieved by our CSC.

1 Introduction

Many reinforcement learning (RL) techniques have
been successfully applied to completely observable en-
vironments [4], which are often formulated as Markov
decision processes (MDPs). However, many real-
world problems such as autonomous acquisition of the
robot’s control cannot be formulated as MDPs, be-
cause noises or obstacles, which are introduced to the
robot’s sensors, prevent the agents from observing all
of the state variables accurately. Such problems can
be formulated as partially observable Markov decision
processes (POMDPs) [3], and some RL methods em-
ploying belief states have been developed for solving
POMDPs [6]. However, those techniques suffer from
several difficulties even with effective approximations
[2]; the model of the environment should be known,
and even if we know the model, the dimensionality
of the belief space is usually high. These difficulties
make the POMDP-RL with belief states infeasible in
real-world problems.

Recently, a policy-gradient RL algorithm with fi-
nite state controllers (FSCs) has been proposed for
solving POMDPs, called IState-GPOMDP [1]. The
FSC is a probabilistic policy which incorporates an

internal state as an input, and the transition proba-
bility of the internal state is identified by the policy-
gradient RL algorithm, together with the optimiza-
tion of the policy. The essential dynamic characters
of the target state space can be extracted by learn-
ing of the transition of the internal state, which is
performed in an irrelevant manner to the underlying
dimensionality of the target state space. Because effec-
tive dimensionality for controls of a high-dimensional
system is often much smaller than the dimensionality
of the whole state space, as the dependence between
the state variables increases, feature extraction by the
IState-GPOMDP can be more effective than directly
reconstructing the true state space as done by the be-
lief state-based methods. We have shown the effec-
tiveness of the IState-GPOMDP with the FSCs when
applied to a partially observable multi-agent system
through computer simulations [5].

Although the IState-GPOMDP shows good perfor-
mance when applied to discrete-state dynamical sys-
tems, a direct application to more realistic problems
whose state space is continuous should be intractable.
In other word, essential features in such a continuous-
state dynamical system may have continuous dynam-
ics, which cannot be extracted by the naive IState-
GPOMDP with the FSCs.

To overcome this difficulty, in this study, we pro-
pose a novel framework by introducing a continuous
internal-state transition model, called a continuous
state controller (CSC), instead of the previous finite-
state alternative (FSC). In this new framework, the
parametric transition model of the internal state in
the CSC can be learned by the IState-GPOMDP to-
gether with the policy optimization. The parameters
of the transition model are adjusted so as to maxi-
mize the average reward, and then the continuous dy-
namics of the essential features can be extracted in
the framework of the reward maximization. We ap-
ply this algorithm to a control problem of a linear
dynamical system under the assumption that some
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Figure 1: Graphical model of a POMDP with an in-
ternal state. The current action ut and the following
internal state yt+1 depend on the current internal state
yt and the observation ot.

state variables cannot be observed. Computer sim-
ulation shows that our continuous internal-state tran-
sition model could successfully extract the dynami-
cal characters of the missing variables, and simultane-
ously, the IState-GPOMDP could achieve good control
for the dynamical system.

2 POMDPs with internal-state transi-
tion models

We consider a finite POMDP, consisting of a set of
true states S, a set of observations O, a set of actions
U , each of which is the output of the controller, and
a set of scalar rewards R. At time t, the true state
st ∈ S cannot be perceived directly by the agent, but
instead, the observation ot, observed by the agent, is
drawn from the probability P (ot|st) conditioned on
the state st ∈ S. The observation ot is, for example,
the true state variable lacking some dimensionalities or
those stained by observation noise. So, it is impossible
to realize an optimal control based only on such in-
sufficient observations. Then, we employ the model in
which an internal state yt ∈ Y is added to the POMDP
definition above as an additional input to the policy.
In the case of using the discrete internal state, such
a policy is called a finite state controller (FSC) and
has been successfully used to solve POMDPs [5]. The
stochastic process over the internal state is prescribed
by the transition probability P (yt+1|yt, ot), where yt

and yt+1 are the internal states at time t and t + 1,
respectively. In this case, the policy is the mapping
from a pair of observation ot and internal state yt to
the output ut. Figure 1 represents the graphical model
of a POMDP employing an internal state. The tran-
sition probability of the internal state P (yt+1|yt, ot)
embedded in the FSC is identified by the policy gra-
dient algorithm together with the optimization of the
policy P (ut|yt, ot). The important dynamic characters

of the target state space are extracted by learning of
the transition probability of the internal-state.

3 Continuous state controllers for
IState-GPOMDP

Although the FSCs can achieve good performance
in controlling partially observable discrete-state dy-
namic systems, the variables in the state space are
often continuous in the real world, and then the essen-
tial dynamic characters can also have continuous dy-
namics. In this section, we propose a novel framework
called continuous state controller (CSC), which has a
continuous internal state and can express the features
with continuous dynamics. Then, we explain how to
apply the IState-GPOMDP, which was formally pro-
posed by Aberdeen and Baxter [1], to our CSCs.

The IState-GPOMDP is a policy gradient-based RL
method which does not seek to estimate the value
function, but adjusts the policy parameters θ and the
internal-state transition parameters φ directly to max-
imize the average reward:

η(φ, θ) := lim
T→∞

1
T

Eφ,θ

[
T∑

t=1

rt

]
, (1)

where Eφ,θ denotes the expectation with respect to
the trajectory (s0, y0, o0, u0), (s1, y1, o1, u1), . . . , pre-
scribed by the parameters φ and θ. The internal state
and the output of the controller are assumed to be
drawn from the parameterized Gaussian distributions
as

p(yt+1|yt, ot) := N (yt+1|f(yt, ot; φ), σ2
φ),

p(ut|yt, ot) := N (ut|g(yt, ot; θ), σ2
θ),

(2)

where f(yt, ot; φ) and g(yt, ot; θ) are functions of
(yt, ot) parameterized by φ and θ, respectively.

The following table shows the pseudo-code
of the IState-GPOMDP applied to a continu-
ous dynamical system to achieve good control.
0: while
1: until the terminal condition, i.e., while t < T
2: Observe ot from p(ot|st).
3: Draw yt+1 from p(yt+1|yt, ot, φ) and ut from

p(ut|yt, ot, θ).
4: Update the estimation of the policy gradient

∆t with respect to φ and θ.
5: Control the system by ut.
6: t + +.
7: end
8: α∆t is added to the parameters φ and θ,

where α is the learning rate.
9: end
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Figure 2: An LQR task, a simple example of the linear
dynamical system. The goal of this task is to make the
ball stop around the origin by controlling the force
applied to the ball.

4 Computer simulation

In this section, we apply the CSC to a partially
observable linear dynamical system and evaluate its
performance.

4.1 Linear dynamical system

A linear dynamical system which we apply our
method to is the linear-quadratic regulator (LQR) task
as Figure 2. The goal of this task is to make the ball
stop around the origin. We define the dynamics of this
system as

p(st+1|st, ut) = N (st+1|Ast + But,Σ), (3)

where st = (xt, vt)T denotes the state vector composed
of the position and the velocity of the ball, ut denotes
the force applied to the ball at time t, and Σ denotes
the state transition noise; Σ = diag(1, 1)× 10−3. The
matrices A and B denote the system parameters as
follows:

A =
[

1 τ
0 1

]
,B =

[
0
τ

]
,

where the time constant is set at τ = 1/60s. The agent
observes the state and takes an action every time step.

The rewards are given by r(st, ut) = −(sT
t Qst +

Ru2
t ), where Q = diag(0.025, 0.01) and R = 0.01.
In our experimental setting, a single learning

episode continues in 10 seconds, and each parameter is
updated every learning episode. If the absolute value
of the position of the ball exceeds 10, the learning
episode is terminated and the parameter is immedi-
ately updated. In this case, the position and the ve-
locity are set to be around 0 randomly.

4.2 Partially observable linear dynamical
system and policy parameterization

To evaluate the performance of the CSC, we apply
it to the partially observable linear dynamical system.
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Figure 3: The learning process

In this system, the velocity of the ball, which is nec-
essary to control the system, cannot be observed. It
is impossible to control the system smoothly only by
the position, so we introduce the continuous internal
states as to compensate the missing velocity.

More concretely, in the completely observable LQR,
it is easily controlled by learning the parameters
(θ1, θ2) of the policy:

P (ut|ot) = N (ut|θ1xt + θ2vt, σ
2
θ). (4)

In the partially observable LQR, on the other hand,
the velocity cannot be observed, so we replace it with
the internal state of the policy:

P (ut|ot, yt) = N (ut|θ1xt + θ2yt, σ
2
θ), (5)

and the internal state transition is modeled as

P (yt+1|ot, yt) = N (yt+1|φ1xt + φ2yt, σ
2
φ), (6)

where both σ2
θ and σ2

φ are 0.12. The action at time
t and the internal state at time t + 1 are drawn from
these distributions, respectively. The parameters φ,
and θ are learned by the IState-GPOMDP.

4.3 Simulation result

We applied the IState-GPOMDP with our CSC to
the controlling problem of the partially observable lin-
ear dynamical system above. The initial values of φ1

and φ2 are 0 + ε (ε ∼ N (0, 10−2)), and those of θ1

and θ2 are −20 + ε. Figure 3 shows the learning pro-
cess, which is averaged over 100 runs and smoothed
over every 300 time step (5 seconds). The parameters
were successfully learned so as to increase the averaged
reward.

Figure 4 shows the time-series of the position, the
velocity and the internal state, and Figure 5 shows
those of the acceleration and the internal state, where
panel(a) shows the time-series before learning and the
panel(b) shows those after learning. The acquired
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Figure 4: (a) The time-series of the position, velocity
and internal state before learning. (b) The time-series
after learning.

internal-state transition seems to imitate the acceler-
ation rather than the velocity. Because the average
reward increased as shown in Figure 3, the accelera-
tion seems to be an important feature for controlling
this system.

5 Discussion

In our experimental result, good control of the lin-
ear dynamical system in the partially observable en-
vironment, in which the velocity cannot be observed,
could be achieved by our method. As a result, the
parameters are converging and the reward is getting
close to 0, which shows the reliability of our method.
However, the essential feature extracted by the inter-
nal state transition model, which is assumed to be
necessary information to control the system, the ac-
celeration rather than the velocity. A further analysis
of such a result is interesting, but remains as our fu-
ture work.

6 Concluding Remarks

In this article, we proposed the continuous state
controller (CSC), which is a probabilistic policy incor-
porating continuous-state variables, and applied it to
controlling a simple partially observable linear dynam-
ical system. As a result, it could achieve good control
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Figure 5: (a) The time-series of the acceleration and
internal state before learning. (b) The time-series after
learning.

by compensating a missing state variable with the con-
tinuous internal state. The CSC we proposed here is,
however, a one-dimensional model, so it is necessary to
extend it to be applicable to more complex systems or
nonlinear-dynamical systems. Such extension of out
CSC will be shown in our future study.
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